Note

The enzymic determination of the enantiomers of galactose

Robert J. Sturgeon

Department of Biological Science, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS (Great Britain) (Received June 13th, 1989; accepted for publication, September 19th, 1989)

The determination of the enantiomeric configuration of sugars in polysaccharides or glycoconjugates is a problem when both enantiomers are present. Enzymic assays have been used to establish the D configuration of glucose and mannose¹. Chemical methods involve g.l.c. of the acetylated chiral oct-2-yl glycosides^{2,3} and of the trimethylsilylated glycosides obtained after solvolysis of polysaccharides with chiral butan-2-ol⁴. Resolution of derivatives of enantiomers has been achieved by g.l.c. using chiral stationary phases^{5,6}.

D-Galactose is widely distributed in Nature, but the L form is much less common. L-Galactose was first reported⁷ as a constituent of the galactan of the snail *Helix pomatia*, and the content was based on the optical rotation of the hydrolysate. Both enantiomers are present in the storage galactans in the spawn of *Biophalaria glabrata*⁸ and four other snails⁹, and in polysaccharides isolated from the extracellular mucilages of the unicellular fresh-water alga *Porphyridium aerugineum*¹⁰ and the unicellular marine alga *P. cruentum*¹¹. The latter polysaccharides also contain D-glucose, D-xylose, and D-glucuronic acid. The content of the L form, isolated chromatographically from the hydrolysed polysaccharide of *P. aerugineum*, was estimated from the difference between the total reducing power and the amount of the D form determined using D-galactose oxidase. L-Galactose, present in the hydrolysates of polysaccharides isolated from flax seed, corn cob, corn root, and the cell walls of *Acer pseudoplatanus*, was determined by g.l.c. of the trimethylsilyl derivative after oxidation of the D form with galactose dehydrogenase.

The approach now reported involves D-galactose dehydrogenase and L-fucose dehydrogenase for the determination of the proportions of the enantiomers of galactose. D-Galactose dehydrogenase (D-galactose:NAD 1-oxidoreductase, EC 1.1.1.48) was originally described¹³ for the oxidation of D-galactose and several related monosaccharides in the presence of NAD and has been used for the quantitation of D-galactose in the absence of L-arabinose, D-fucose, and, to a lesser extent, 2-amino-2-deoxy-D-galactose^{14,15}.

NAD-dependent L-fucose dehydrogenase (6-deoxy-L-galactose:NAD⁺ 1-oxidoreductase EC 1.1.1.122) oxidises L-fucose, L-galactose, and D-arabinose. Therefore, in the absence of L-fucose and D-arabinose, the levels of L-galactose can be measured on the basis of the reaction:

500 NOTE

TABLE I
Content of D- and L-galactose in polysaccharides from various sources

Source	Enantiomer (%) This work		Literature		Ref.	
	D	L	D	L		
H. pomatia	78	22	85	15	7	
B. glabrata	100	0	99.9	0.1	16	
P. aerugineum	70	30	75	25	10	
P. cruentum	62	38	67	33	10	

L-Galactose + NAD \rightarrow L-Galactono-1,4-lactone + NADH + H⁺.

Although the relative rates of reaction and values of $K_{\rm m}$ are poorer for L-galactose than for L-fucose, measurement of the initial velocity of the reaction allows L-galactose to be determined readily. A linear relationship between the velocity of the enzymic reaction $(A_{340}/{\rm min})$ was observed for the range 0–2.0 μ mol of L-galactose.

Examination of hydrolysates with the fucose dehydrogenase system confirmed the presence of L-galactose in the polysaccharides from H. pomatia, P. aerugineum, and P. cruentum, but its absence from that of B. glabrata (Table I). Correa et al.⁸ reported > 36% of L-galactose in the galactan of B. glabrata, whereas Bretting et al.⁹ found only 12.2%, although this was based on the use of D-galactose oxidase and the $[a]_D^{20}$ value of the galactan. More recently, Bretting et al.¹⁶ found L-galactose to be absent from B. glabrata galactan on the basis of g.l.c. of trifluoroacetylated methyl glycosides, using a chiral stationary phase. An L-galactose content of 12.5–14.3% for the H. pomatia galactan has been calculated from the optical rotation of a hydrolysate of the polysaccharide $^{79.17}$. Widely divergent DL-ratios have been reported for the galactose in the polysaccharide from P. cruentum, namely, 10:90 by Medcalf et al. and 67:33 by Percival et al.¹⁰.

The results of the study now reported indicate that the proportions of the D and L forms of galactose can be measured using the two enzymic procedures, provided that the action pattern of the enzymes towards other monosaccharides is known. The D-galactose dehydrogenase from *Pseudomonas fluorescens* used in this study will oxidise L-arabinose, D-fucose, and D-galactose, whereas the enzyme from rat liver¹² will not oxidise L-arabinose, but is strongly inhibited by NADH, one of the products of the reaction¹⁸. The fucose dehydrogenase can be used for the estimation of L-galactose, provided that L-fucose is absent.

EXPERIMENTAL

L-Fucose dehydrogenase from porcine liver was purchased from Sigma, and β -D-galactose dehydrogenase from *P. fluorescens* from Boehringer.

Hydrolysis of polysaccharides. — Samples (\sim 5 mg) were hydrolysed in M $\rm H_2SO_4$ for 1 h at 100° and the pH of each hydrolysate was adjusted to 8.0 with 2M NaOH. Samples were kept at -10° until assayed.

NOTE 501

Enzymic estimations. — (a) D-Galactose. The galactose dehydrogenase end-point assay involving measurement of the NADH produced at pH 8.6 (ref. 1) was used¹⁴.

(b) L-Galactose. The initial absorbance at 340 nm of a mixture of 0.5m Tris buffer (0.75 mL, pH 8.0), NAD (0.1 mL, 10 mg.mL $^{-1}$), and a solution of L-galactose (either a standard or from a polysaccharide hydrolysate, 0.15 mL) was measured. The reaction was initiated by the addition of L-fucose dehydrogenase (0.02 mL, 0.2 U) and the change in absorbance at 340 nm was measured during 3 min. Using a standard solution of L-galactose, a linear response for the rate of production of NADH was obtained in the range 0.2–2.0 μ mol.

ACKNOWLEDGMENTS

Professor H. Bretting is thanked for supplying samples of H. pomatia and B. glabrata galactans, and Dr. Elizabeth Percival for samples of polysaccharides from P. aerugineum and P. cruentum.

REFERENCES

- 1 C. J. Brigden and S. G. Wilkinson, Carbohydr. Res., 138 (1985) 267–276.
- 2 K. Leontein, B. Lindberg, and J. Lonngren, Carbohydr. Res., 62 (1985) 359-362.
- 3 S. Furn and S. G. Wilkinson, Carbohydr. Res., 139 (1985) 293-297.
- 4 C. G. J. Gerwig, J. P. Kamerling, and J. F. G. Vliegenthart, Carbohydr. Res., 77 (1979) 1-7.
- 5 W. A. Konig, P. Mischnicklubbecke, B. Brassat, S. Lutz, and G. Wenz, Carbohydr. Res., 183 (1988) 11-18.
- 6 W. A. Konig, I. Benecke, and H. Bretting, Angew. Chem. Int. Ed. Engl., 20 (1981) 693-694.
- 7 D. J. Bell and E. Baldwin, J. Chem. Soc., (1941) 125-131.
- 8 J. B. C. Correa, A. Dmytraczenko, and J. H. Duarte, Carbohydr. Res., 3 (1967) 445-452.
- 9 H. Bretting, N. F. Whittaker, E. A. Kabat, K. Konigsmann-Lange, and J. Thiem, *Carbohydr. Res.*, 98 (1981) 213–236.
- 10 E. E. Percival and R. A. J. Foyle, Carbohydr. Res., 72 (1979) 165-176.
- 11 D. G. Medcalf, J. R. Scott, J. H. Brannon, G. A. Hemerick, R. L. Cunningham, J. H. Chessen, and J. Shah, Carbohydr. Res., 44 (1975) 87–96.
- 12 R. M. Roberts and E. Harrer, *Phytochemistry*, 12 (1973) 2679–2682.
- 13 K. Wallenfels and G. Kurz, Biochem. Z., 335 (1962) 559-572.
- 14 R. J. Sturgeon, Methods Carbohydr. Chem., 8 (1980) 131-133.
- 15 J. Melrose and R. J. Sturgeon, Carbohydr. Res., 118 (1983) 247-253.
- 16 H. Bretting, G. Jacobs, I. Benecke, W. A. Konig, and J. Thiem, Carbohydr. Res., 139 (1985) 225-236.
- 17 H. J. Horstmann and M. Geldmacher-Malinckrodt, *Hoppe-Seyler's Z. Physiol. Chem.*, 325 (1961) 251-259
- 18 P. Cuatrecasas and S. Segal, J. Biol. Chem., 241 (1966) 5910-5918.